

RAIL2X

Slawa Lang, Siemens Mobility GmbH; "Rail2X" consortium Safety meets Security 2019

SIEMENS Ingenuity for life

Unrestricted © Siemens Mobility GmbH 2019

www.siemens.com/mobility

How secure is an ITS communication system and can it be extended to rail traffic?

Unrestricted © Siemens Mobility GmbH 2019

Contents

• C-ITS	4
Rail2X	7
• ITS-G5 PKI	15
 ITS-G5 security aspects 	22
Rail ITS PKI	25

C-ITS

Intelligent Transportation Systems

Unrestricted © Siemens Mobility GmbH 2019

www.siemens.com/mobility

ITS shall make (road) traffic safer, more environmentally friendly, more efficient and more comfortable

Intelligent Transportation Systems (ITS)

Unrestricted © Siemens Mobility GmbH 2019

Slawa Lang / MO MM R&D SYS SR

Essential for ITS is communication: Traffic participant ↔ other participant Traffic participant ↔ infrastructure

→ Cooperative-ITS (C-ITS)

In road traffic: Car2X, Car2Car communication

Vehicle2X uses special Wi-Fi, but 5G mobile communications could be used too

Vehicle2X – Standardization activities, frequency allocation

Unrestricted © Siemens Mobility GmbH 2019

Page 6 07.11.2019

Rail2X

Vehicle2X technology in rail traffic

Unrestricted © Siemens Mobility GmbH 2019

www.siemens.com/mobility

Road ITS shall be adapted to rail traffic, to facilitate efficient services

Rail2X – Smart Services

Adaptation of Wi-Fi Car2X communication to rail traffic / for rail ITS

- \rightarrow increased safety
- \rightarrow improved comfort
- → more efficient maintenance
- \rightarrow cost reduction

Feasibility and reasonableness are demonstrated based on 3 use cases at Erzgebirgsbahn

Rail2X – Use cases

1: Service and diagnosis

Data exchange Infrastructure ↔ train

 \rightarrow inexpensive data capturing \rightarrow more efficient maintenance

Unrestricted © Siemens Mobility GmbH 2019 Page 9 07.11.2019

2: Barrier crossing on call

Information exchange Vehicle ↔ level crossing

 \rightarrow increased safety

 \rightarrow improved comfort

3: Request stop

Information exchange Train \leftrightarrow station

 \rightarrow inexpensive communication \rightarrow more efficient regional traffic

Data can be captured inexpensively and analyzed centrally

Use case 1: Service and diagnosis

- Collection of (sensor) data at important infrastructure locations (e.g. points)
- Collection of data by passing trains with Rail2X
- Transfer of data to central server e.g. in depot
- Saving and analysis of data at central place
- → inexpensive data capturing without permanent communication link
- → more efficient maintenance

Concept of barrier on call remains by more efficient log on and off

Use case 2: Barrier crossing on call

- Barrier on call: normally closed, opens upon logging on (if safe)
- Traffic participants without Vehicle2X: manual log on and off as usual
- Traffic participants with Vehicle2X: automatic log on and off via communication with level crossing; display of acknowledgement
- \rightarrow improved comfort
- \rightarrow shorter waiting times
- \rightarrow increased safety

Regional traffic becomes efficient by inexpensive and comfortable **SIEMENS** request stops Ingenuity for Life

Use case 3: Request stop

- Request stop: Train stops only upon request of passengers in train or at station
- Transmission of stop request at station to train via Rail2X
- Transmission 'Train stops' from train to station via Rail2X
- \rightarrow improved comfort
- \rightarrow inexpensive communication
- \rightarrow more efficient regional traffic

A hopping station increases communication range

Hopping station

- Hopping station: forwards Rail2X messages
- Placement e.g. in curves without line of sight

 \rightarrow increased communication range

Data shall be collected, analyzed and used for better maintenance **SIEMENS** among others

System environment with data server

Unrestricted © Siemens Mobility GmbH 2019

Ingenuity for life

ITS-G5 PKI

Security architecture of Vehicle2X communication

Unrestricted © Siemens Mobility GmbH 2019

www.siemens.com/mobility

There exist different kinds of ITS messages which shall fulfill different security goals

Message models

Authentication, authorization, integrity

Authentication, authorization, integrity, privacy

All

All

Individual Private Messages or Security Associations (unicast)

Authentication, authorization, integrity, confidentiality, (privacy)

Specific recipient

Security Association:

- Setting up of a secure communication channel
- Confidential
 communication

How to establish a secure communication between ITS-stations?

PKI architecture / C-ITS trust model

How to establish a secure communication between ITS-stations?

Unrestricted © Siemens Mobility GmbH 2019 Page 17 07.11.2019

Slawa Lang / MO MM R&D SYS SR

First the ITS-station registers with its predefined profile at the EA, to obtain eligibility

PKI architecture / C-ITS trust model

- 1) ITS-station obtains ID, keys and profile from manufacturer or operator, e.g. in form of a BC
- ITS-station requests eligibility at EA with BC
- After review EA issues general eligibility to participate at ITS in form of EC

Then the ITS-station requests from the AA specific, pseudonymized authorizations

PKI architecture / C-ITS trust model

- 4) ITS-station requests specific authorizations at AA with EC
- 5) AA reviews EC via consultation with EA (AA does not obtain true identity of ITS-station)
- 6) AA issues authorizations in form of ATs (with data unknown to EA)

SIEMENS Ingenuity for life With authorizations communication is possible, in accordance with the principles authentication, authorization, privacy

PKI architecture / C-ITS trust model

7)

EAs and AAs obtain permission to issue certificates from a Root **Certification Authority**

PKI architecture / C-ITS trust model

- Root Certification Authority (CA) is highest certification authority and certifies that EAs and AAs can issue ECs or ATs resp.
- There can be a single Root CA as an absolute entity or several Root CAs which verify each other
- Concrete: set of Root CA certificates is in place and known to all. One can apply for a certificate.

From standard: ETSI TS 102 940

SIEMENS Ingenuity for life

ITS-G5 security

Security aspects of Vehicle2X communication

Unrestricted © Siemens Mobility GmbH 2019

www.siemens.com/mobility

Security Services operate within the layers of the communication architecture, as well as across in the management

ITS security in communication architecture

Security Services offer

- Authentication
- Authorization
- Accountability
- Integrity
- Confidentiality
- Privacy

Page 23

Availability

From standard: ETSI TS 102 940

ITS Applications		OS	I model	ITS Applications	Security Management Enrolment Authorization
Facilities Manage Security Association	Application Layer	>	Application Layer	Facilities Manage Security Association	Remote management (Note) Report misbehaviour Identity management
Send secured message across SA Payload encryption Key management Insert payload sequence number Time-stamp payload	Presentation Layer		Presentation Layer	Receive secure message from SA Payload plausibility validation Validate payload integrity Payload decryption Validate payload sequence number	
Identification	Session Layer	$ \rightarrow $	Session Layer	Validate payload time-stamp Identification	
Networking & Transport Manage Security Association Authorize message Sign message	Transport Layer		Transport Layer	Networking & Transport Manage Security Association Validate message authorization Validate message integrity	
Encrypt message Insert message generation time Insert message sequence number Identification	Network Layer		Network Layer	Verify signature Decrypt message Validate message generation time Validate message sequence number Identification	
Access				Access	
Identification	Data Link Layer		Data Link Layer	Identification	
	Physical Layer		Physical Layer		Hardware Security Module (HSM)

07.11.2019

Slawa Lang / MO MM R&D SYS SR

An HSM is responsible for communication encryption and PKI handling

Hardware Security Modul (HSM)

HSM:

- Secure saving of private keys
- Secure execution of cryptographic functions
- Access to sensible data / keys only with explicit permission and via protected interfaces
- Siemens ESCoS RSU has an HSM

From standard: ETSI TS 102 940

Rail ITS PKI

Structure of PKI for rail-specific ITS applications

Unrestricted © Siemens Mobility GmbH 2019

www.siemens.com/mobility

A rail-specific sub-PKI as part of the whole ITS PKI is conceivable

Thank you for your attention.

RAĨL²X

Questions?

Unrestricted © Siemens Mobility GmbH 2019

www.siemens.com/mobility

a 10001

2 14

5 11 4

Contacts

Dr. Slawa Lang Siemens Mobility, MO MM R&D SYS SR

Telephone: +49 174 2634873 E-mail: <u>slawa.lang@siemens.com</u>

Prof. Dr. Jens Braband Siemens Mobility, MO MM R&D SYS

Telephone: +49 173 6062831 E-mail: jens.braband@siemens.com

Ingo Schwarzer DB Systel

Telephone: +49 30 29716370 E-mail: <u>ingo.schwarzer@deutschebahn.com</u>

Unrestricted © Siemens Mobility GmbH 2019 Page 28 07.11.2019

Slawa Lang / MO MM R&D SYS SR